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SUMMARY 
This Working Paper reviews the characteristics of three arrival process models (referred 
to here as Bernoulli, Poisson, and Pascal) for 1090 MHz Fruit, and describes three decode 
probability models (referred to here as Geometric, Linear, and Quadratic) for 1090 MHz 
Extended Squitter (ES). 
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1090 MHz Fruit Models and Reception Probability Models 
 
 
INTRODUCTION 
 
This working paper reviews the characteristics of three arrival process models (referred to 
here as Bernoulli, Poisson, and Pascal) for 1090 MHz Fruit, and describes three decode 
probability models (referred to here as Geometric, Linear, and Quadratic) for 1090 MHz 
Extended Squitter (ES), in an attempt to answer three questions: 

1. How to determine if the 1090 MHz ATCRBS Fruit arrival count data fits a 
Negative Binomial Distribution (NBD)? 

2. How may a NBD Fruit environment effect 1090 MHz ES reception performance? 
3. How to generate with hardware, and/or simulate with software, Fruit arrival data 

with an appropriate inter-arrival time distribution? 
 
 
BACKGROUND 
 
Re/Q1. WP-15-01 proposed using the method of moments (Ref.1 and Fig.5) to estimate 
the parameters of the NBD, and then using it to fit the over dispersed 1090 MHz 
ATCRBS Fruit arrival count (frequency of overlaps) data, reported in SC-186 WG-3 
working papers WP-12-14, WP-13-05, WP-13-14, and WP-14-12.  A preliminary 
comparison was made for some of the LA airborne Fruit data, which had a variance-to-
mean ratio between 2 and 2.5, only for Fruit overlaps (time interval occupancy numbers) 
of zero, one, and two.  This working paper extends this analysis, using NBD table look-
up, to eight overlaps.  
 
Re/Q2. WP-14-15 reported on the results of a simulation of the effect of non-Poisson 
ATCRBS Fruit on ES reception performance, using a curve fit to some of the LA 
airborne cumulative Fruit inter-arrival time data, for the high power Fruit. It was noted 
that the total (high, and low power Poisson) pulse-level simulated Fruit applied to the 
receiver had a variance-to-mean ratio of 1.6. The main conclusion of the analysis was 
“that the non-Poisson timing behavior of ATCRBS fruit does not have a significant effect 
on Extended Squitter reception probability”, which was presented as a function of the 
received signal power (dBm at antenna). 
 
This working paper examines the effect of Poisson and NBD ATCRBS Fruit on ES 
reception performance; using different models (linear and quadratic curve fits) of decode 
probability (a function of the number of ATCRBS interferers, referred to as reception 
probability (average over received signal power centered at the average fruit power), in 
WP-10-08) for Appendix I and LDPU receivers. The decode probability is summed (or 
integrated) over the terms of the Fruit distribution to obtain the reception probability.  
(You might say that this reception probability measures the integral effect of the Fruit 
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distribution on reception performance, whereas, the reception probability in WP-14-15, 
and the 1090 MHz Extended Squitter Assessment Report, June 2002 (WP-12-05), 
measures the differential effect of the received power on reception performance.  It is 
proposed that small differences in probability, spread out over the differential curve, will 
show up in the integral, provided it is properly normalized.)      
 
Re/Q3. WP-15-01R contains (3) figures. I have completed (by definition) the analysis 
(best guess) of this question, and have modified and expanded the number of figures (10). 
   
 
DISCUSSION & FIGURES 1-5 
 
It is widely accepted that a Poisson distribution in counts (number/time interval), is 
consistent with exponential inter-arrival, and gamma arrival separation (waiting time for 
the nth count) distributions in the time domain.  See Row 3 of Fig.1.  Less well 
appreciated is the fact that a BD in counts is consistent with geometric (GD-0) 
interarrival, and negative binomial (NBD-0) arrival separation distributions.  See Row 2 
of Fig.1. (Also see Ref.4.) The problem faced in this part of the study was, if you have a 
modified form of the NBD-2 (a NBD postulated to exist that reduces to the PD for small 
a priori probability, to be discussed in Fig.2) in counts, what are the interarrival and 
arrival separation distributions?  This analysis indicates that modified forms of the 
geometric (GD-1) interarrival, and negative binomial (NBD-1) arrival separation 
distributions, are consistent with a NBD-2 count distribution.  See Row 4 of Fig.1.    
 
Fig.1:  Arrival Process Distributions.  Original figure (found in WP-15-01R, presented to 
WG-3 at meeting #15), with headings of Columns 2, 3, and 4, modified to hopefully 
make them clearer, and best “guesses” for “missing” distributions added to columns 3 
and 4.  There doesn’t appear to be any universally accepted naming of processes and/or 
distributions, which adds to the general confusion of the subject.  For example, what I’m 
calling the Pascal process may also go by other names (Polya process, Gamma-Mixed 
Poisson process, etc.), because of the many ways that the NBD can be mathematically 
generated (Refs.2 and 3), and it is also a Bernoulli-type (p+q=1) process.  The modified 
geometric distribution (GD-1) and/or the negative binomial distribution (NBD) are also 
some times referred to as the Pascal distribution.  The NBD may be more heavily used in 
the “real” world (versus the classroom) than its’ relative, the BD, which may be a 
reflection of the fact that the NBD appears in 3 forms in Fig.1.  

1. Column 1: F-D = Fermi-Dirac; M-B = Maxwell-Boltzmann; B-E = Bose-Einstein. 
2. Columns 2, 3, and 4: Details for each column starting in Figs.2, 7 and 10, 

respectively.  In the limit (see Fig.2 and Fig.7 notes): BD and NBD-2 reduce to 
Poisson, GD-0 and GD-1 reduce to Exponential, and NBD-0 and NBD-1 reduce 
to Gamma.  

3. 3 NBD’s are defined in Figs.2 and 10.  NBD-1 and NBD-2 are the 2 forms of the 
NBD described in WP-15-01.  

4. Column 3: Why I am calling X = GD-1 will become clear in Fig. 9, where the 2 
geometric distributions (GD-0 and GD-1) are defined. 
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Fig.2 (New):  Arrival Count Distribution.  To answer Jim’s question, everything in Figs.2 
thru 5 is dimensionless.  However, there is another caution associated with these figures.  
I have used the same symbols for the parameters in the three distributions.  In fitting data, 
for comparison purposes, it may be useful to assume that the parameters have the same 
meanings/definitions for the three distributions.  However, in calculating a distribution, 
this may not be a good assumption.  I assumed they were different in my previous Navy 
study (see background section of WP-15-01).  There wasn’t time to complete a study of 
this problem.   

1. Column 2: f(x), normalized to one (1), is the probability distribution for the 
discrete random variable x = the number of arrivals (in a time interval or bin). 
Note differences/similarities in domain of x. 

2. Columns 2 and 3: There are two parameters, n and p, for the BD; one parameter, 
M for the PD, which may be set equal to np; and two parameters, n and q=1-p, for 
the NBD-2.  

3. Columns 2, 3, and 4: Note similarities/differences 
4. Column 4: Three cases: Binomial M>V; Poisson M=V; Negative Binomial M<V.  

In the limit, if p<<1 (q~1), then all three distributions are approximately the same. 
 
Fig.3 (New): Reception Probability Models I.  Figs. 3-6 relate to Fruit and the signal. 

1. Column 1: Fruit arrival model. 
2. Column 2: f(0) = Probability of no fruit (non-arrival probability), which in the 

“old days” was the signal Reception Probability.  Note that B(0) and NB(0) are 
the same if n and q are defined the same.  Note (1-p)^n < exp(-np). 

3. Column 3: Sometimes, if a signal could be decoded with 1 fruit present, then the 
reception probability would be f(0) plus some fraction of f(1).  Assume, the 
contribution from f(1) to the reception probability is (1-k)f(1), where k is the 
fraction of f(1) lost.  As noted, in the “old days”, k might equal 1, or .6, or .3, for 
example, depending on many factors including the fruit and signal power levels.  
With enhanced decoding, k may now equal .01, for example. 

4. Column 4: Linear decoder model.  In addition, higher terms, for example, f(2), 
f(3), f(4), etc., may now contribute to the overall reception probability with 
enhanced decoding.  The linear decoder model accounts for this, by letting the 
fraction of the contribution from each number of fruit overlaps be equal to (1-kx), 
where x is the number of fruit overlaps, and k is a constant.  In other words, the 
linear reception probability is given by: f(0) + (1-k)f(1) + ((1-2k)f(2) + … Note, if 
all the parameters are the same for the three distributions, then the NBD 
Reception Probability is lowest.  However, in terms of their respective means, the 
three fruit models give the same Reception Probability for the linear decode 
model.  Using a linear decoder would support the results in WP-14-15 that 
reception performance does not change significantly with Fruit model.  However, 
what if it’s not a linear decoder?  

 
Fig.4 (New): Reception Probability Models II.  There is a double caution associated with 
this figure.  In addition to using the same symbols for the parameters in the Fruit 
distributions, I have also used the same symbol k for the parameter in the decode 
probability distribution.  For comparison purposes this may be OK, but when you’re 
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fitting a set of data, obviously the values of k will be different depending on which 
decode model you are using.   

1. Column 1: Fruit arrival model. 
2. Column 2: Geometric Decoder Model (A best case scenario for NBD). The 

geometric (series) decoder model accounts for decoding of higher terms, by 
letting the fraction of the contribution from each number of fruit overlaps be equal 
to (1-k)^x, where x is the number of fruit overlaps, and k is a constant.  In other 
words, the geometric reception probability is given by: f(0) + (1-k)f(1) + ((1-
k)^2)f(2) + … It appears that for a given k, the NBD fruit model gives the largest 
Reception Probability for the geometric decode model.  The geometric decoder 
model is concave up, similar to an exponential (more about that later). 

3. Column 3: Linear Decoder Model repeated for comparison. 
4. Column 4: Quadratic Decoder Model (A worst case scenario for NBD).  I looked 

at WP-10-08, where there is a figure showing both simulation (using Appendix I, 
4-4 table) and LDPU reception probability versus the number of ATCRBS 
interferers.  The curves in this figure represent what I am calling decode 
probability, and they appear concave down.  One of the simplest concave down 
models would be the quadratic model.  The quadratic decoder model accounts for 
decoding of higher terms, by letting the fraction of the contribution from each 
number of fruit overlaps be equal to (1-k(x^2)), where x is the number of fruit 
overlaps, and k is a constant.  In other words, the quadratic reception probability 
is given by: f(0) + (1-k)f(1) + ((1-4k)f(2) + … It appears that for a given k, the 
NBD fruit model gives the smallest Reception Probability for the quadratic 
decode model.  To see this more clearly, see Fig.5, Column 4 note.   

 
Fig.5 (New):  Method of Moments.  Problem:  From the point of view of the data, don’t 
know n, and p or q.  Therefore, I will use the method of moments (mean and variance) 
technique (Ref.1) to estimate n, and p or q.  (Other methods exist, e.g., maximum 
likelihood estimation (MLE), but they are more complicated and do not lead to closed 
form solutions.)   

1. Column 1:  See Fig.2 Column 4 for true (population) values of M and V. 
2. Columns 2 and 3:  Using the measured (sample) values of M and V in the two 

moment relationships given for each distribution in Fig.2 Column 4, solved for q 
and n in terms of M and V.  Measured values of M and V are used in the 
Numerical Results section to estimate the values of the first eight (8) terms of the 
NBD for LA airborne data.         

3. Column 4:  These expressions derived from the fact that the variance of a 
probability law is equal to its mean square, minus its square mean.  Measured 
values of M and V are used in the Numerical Results section to estimate the 
Reception Probability for a Quadratic (1-k(x^2)) Decoder, and it is compared to 
the results for a Linear (1-kx) Decoder where only M is required.  For data with a 
given M: BD has largest quadratic decode Reception Probability, since V<M; and 
NBD has the smallest quadratic decode Reception Probability, since V>M. 
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NUMERICAL RESULTS 
 
1. LA Data Compared to NBD Table Look-Up.  The same LA airborne data (contained in 
memos dated 31 July 02, and 2 August 02, from Bill Harman, and WP-13-14) compared 
in WP-15-01, but now for occupancy numbers zero (0) thru eight (8), were compared to 
table look-up values for the NBD found in Ref.5 (page numbers given below).  For the 
LA data the values (estimates) of q and n are based on the sample values of M and V 
(Method of Moments): whereas in the Table, the population (true) values of M and V are 
based on the values of q and n.  Keeping in mind that the table look-up values were not 
interpolated, and that the measured values were read from histograms, the results below 
appear acceptable. While there may be something else going on in the low occupancy 
bins, the tail of the distribution seems to be well matched. 
 
LA data (Higher Threshold):  
 
NBD q n Mean Variance 
LA data fit 0.48 1.51 1.6 3.3 
Table (p. 159) 0.48 1.5 1.63 3.39 
 
x fruit 0 1 2 3 4 5 6 7 8 
Data .32 .28 .18 .10 .06 .03 .02 .01 .01 
Table .33 .26 .17 .10 .06 .03 .02 .01 .01 
 
 
LA data (Normal Threshold, -84 dBm at antenna): 
 
NBD q n Mean Variance 
LA data fit 0.45 1.57 1.96 4.4 
Table (p. 146)  0.44 1.6 2.04 4.68 
 
x fruit 0 1 2 3 4 5 6 7 8 
Data .24 .28 .21 .12 .07 .04 .03 .02 .01 
Table .27 .24 .18 .12 .08 .05 .03 .02 .01 
 
 
LA data (Lower Threshold): 
 
NBD q n Mean Variance 
LA data fit 0.42 2.06 2.8 6.6 
Table (p. 139) 0.42 2.0 2.76 6.58 
 
x fruit 0 1 2 3 4 5 6 7 8 
Data .13 .22 .21 .15 .10 .07 .04 .03 .02 
Table .18 .20 .18 .14 .10 .07 .05 .03 .02 
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2.  Receiver Performance in a NBD Fruit Environment.  This is an estimate of the 1090 
MHz ES reception probability in a NBD fruit environment, based on linear and quadratic 
fits to the LDPU and Lincoln Laboratory simulated (based on techniques in Appendix I) 
data presented in WP-10-08.  Geometric model also included in Fig.4, but does not fit 
this data.  The models do not explicitly account for fruit and signal power levels, other 
than their effect on the decode parameter k. 
  
 
Linear Decode Model: See Fig.4 Column 5 note, which refers to WP-10-08, which 
contains a figure showing both simulation (using Appendix I, 4-4 table) and LDPU 
reception probability versus the number of ATCRBS interferers.  The curves in this 
figure represent what I am calling decode probability.  I will attempt to fit lines to these 
curves. The table below contains numerical values for the Linear (1-kx) Decode model.  
The Appendix I (4-4 table) curve very approximately fits the k = .04 line, and the LDPU 
very approximately fits the k = .08 line.  From this we can determine the Reception 
Probability in the next table, given the mean fruit rate (with a decode interval  = 100 
microseconds).  The Reception Probability decreases with Fruit rate, as expected. 
   
Linear Decode Probability = 1 – kx 
 
  k       x fruit       1 2 3 4 5 
.02 .98 .96 .94 .92 .90 
.04 (App. I)  .96 .92 .88 .84 .80 
.06 .94 .88 .82 .76 .70 
.08 (LDPU) .92 .84 .76 .68 .60 
.10 .90 .80 .70 .60 .50 
 
 
Linear Decode Reception Probability  = 1-kM (M=100 microsecond bins*fruit rate) 
 
 k    fruit rate 10,000/sec. 15,000/sec. 20,000/sec. 25,000/sec. 30,000/sec. 
.02 .98 .97 .96 .95 .94 
.04 (App. I) .96 .94 .92 .90 .88 
.06 .94 .91 .88 .85 .82 
.08 (LDPU) .92 .88 .84 .80 .76 
.10 .90 .85 .80 .75 .70 
 
 
 
 
 
 
Quadratic Decode Model: See Fig.4 Column 5 note, which refers to WP-10-08, which 
contains a figure showing both simulation (using Appendix I, 4-4 table) and LDPU 
reception probability versus the number of ATCRBS interferers.  The curves in this 
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figure represent what I am calling decode probability, and they appear concave down.  I 
will attempt to fit a quadratic to these curves as being one of the simpler concave down 
models. The table below contains numerical values for the Quadratic (1-k(x^2)) Decode 
model.  The Appendix I (4-4 table) curve very approximately fits the k = .010 curve, and 
the LDPU very approximately fits the k = .020 curve.  From this we can determine the 
Reception Probability in the next set of tables, given the mean fruit rate (with a decode 
interval = 100 microseconds), and the Variance/Mean (V/M) ratio of the NBD. The 
Reception Probability decreases with Fruit rate, as expected, and it also decreases with 
V/M ratio. 
 
 
Quadratic Decode Probability = 1 – k(x^2)  
 
   k      x fruit       1 2 3 4 5 
.005 .995 .980 .955 .920 .875 
.010  App. I .990 .960 .910 .840 .750 
.015 .985 .940 .865 .760 .625 
.020  LDPU .980 .920 .820 .680 .500 
.025 .975 .900 .775 .600 .375 
 
 
 
Quadratic Decode Reception Probability = 1-k((M^2)+V) (M=1=100 microsecond 
bins * fruit rate of 10,000 fruit/sec.) as a function of fruit variance (V). 
 
   k V=M=1 V=1.5M V=2M V=2.5M V=3M 
.005 .9900 .9875 .9850 .9825 .9800 
.010  App. I .9800 .9750 .9700 .9650 .9600 
.015 .9700 .9625 .9550 .9475 .9525 
.020  LDPU .9600 .9500 .9400 .9300 .9200 
.025 .9500 .9375 .9250 .9125 .9000 
 
 
 
Quadratic Decode Reception Probability = 1-k((M^2)+V) (M=2=100 microsecond 
bins * fruit rate of 20,000 fruit/sec.) as a function of fruit variance (V). 
 
  k V=M=2 V=1.5M V=2M V=2.5M V=3M 
.005 .9700 .9650 .9600 .9550 .9500 
.010  App. I .9400 .9300 .9200 .9100 .9000 
.015 .9100 .8950 .8800 .8650 .8500 
.020  LDPU .8800 .8600 .8400 .8200 .8000 
.025 .8500 .8250 .8000 .7750 .7500 
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Quadratic Decode Reception Probability = 1-k((M^2)+V) (M=3=100 microsecond 
bins * fruit rate of 30,000 fruit/sec.) as a function of fruit variance (V). 
 
   k V=M=3 V=1.5M V=2M V=2.5M V=3M 
.005 .9400 .9325 .9250 .9175 .9100 
.010  App. I .8800 .8650 .8500 .8350 .8200 
.015 .8200 .7975 .7750 .7525 .7300 
.020  LDPU .7600 .7300 .7000 .6700 .6400 
.025 .7000 .6625 .6250 .5875 .5500 
 
 
 
 
 
Summary of Results for Linear and Quadratic Decode Models: 
 
Decode Model:  Linear  Quadratic Quadratic Quadratic 
10K/sec Fruit Environment: Any Poisson (V/M=1) NBD (V/M=2)     Diff. 
Appendix I (4-4 table): .96  .98  .97  .01 
LDPU:    .92  .96  .94  .02 
 
20K/sec Fruit Environment  
Appendix I (4-4 table): .92  .94  .92  .02 
LDPU:    .84  .88  .84  .04 
 
30K/sec Fruit Environment  
Appendix I (4-4 table): .88  .88  .85  .03 
LDPU:    .76  .76  .70  .06 
 
 
 
 
 
This is the way I would interpret the results for an over-dispersed (e.g., V/M=2) NBD 
Fruit environment.  If the reception probability were the same for linear and quadratic 
decode models at a specified fruit rate (here 20K/sec.), then I would expect that at lower 
fruit rates (e.g., 10K/sec.) the quadratic decode model would do better, and at higher fruit 
rates (e.g., 30K/sec.) the linear decode model would do better.  Graphically, this makes 
sense. 
 
 



1090-WP-16-02R1 

 
 
DISCUSSION & FIGURES 6-10 
 
In Figs.6-10, time enters the picture through the relationship M = at, where M is the 
(measured or true) mean number of arrivals, a is the (measured or true) mean Fruit rate 
(units of inverse time), and t is the time interval.  Actually, t is used to define the p’s (or 
q’s), and should have been discussed before Figs.1-5, as a motivation for the way the 
distributions may be associated with the counting statistics (Refs.6 and 7).   
 
Fig.6: Reception Probability Estimates.  This figure is a Summary of Results for Linear 
and Quadratic Decode Models also found in the Numerical Results Section.      
 
Fig.7: Inter-arrival Separation. This is the original fig.2 (found in WP-15-01R, presented 
to WG-3 at meeting #15), with the following changes:  In Column 1 show how f(0;n,p) 
becomes f(0;n,M); changed f’s to g’s in headings to Columns 3 and 4, to make it clear 
that they are different functions; let x stand for the discrete random variable in Column 4, 
and filled in a name for distribution X.        

1. Column 1: Note that in the limit, if n>>1, then all three distributions are the same. 
Compare with Fig.2. 

2. Column 2 is the same as Column 1, with M = at, where a is the true mean fruit 
rate in a time interval of length t.  This term is set equal to 1 – cumulative 
probability P (expressed as a function of the time interval).    

3. Column 3: g(t) is the derivative of the cumulative probability with respect to the 
time interval.  It is normalized to one (1)(?), and is the probability distribution for 
the continuous random variable t = the time between two arrivals (in a time 
interval or bin). There are two parameters, n and a, for the distributions associated 
with the Bernoulli and Pascal processes, and one parameter, a, for the distribution 
associated with the Poisson process. I have indicated “best guess” names for these 
distributions.  For the Binomial, it appears to be a generalized Beta distribution.  
For the Poisson, it is the well-accepted Exponential distribution.  And for the 
Negative Binomial, it appears to be a generalized Pareto distribution.  

4. Column 4 is a discrete version of Column 3, setting t=n=x.  (Using x so as not to 
get confused about variable vs. parameter.)  I still have questions about this step, 
and the others in this figure.  The result in Row 2, i.e., that the GD-0 is the 
interarrival distribution for the BD, is generally accepted.  Therefore, I shall 
assume that the result in Row 4 is correct, i.e., that the GD-1 (see Fig.9 for 
justification of name) is the interarrival distribution for the NBD-2.  Note: To 
normalize GD-1, it is required that the domain of x include zero (0).    

 
Fig.8:  Inter-arrival Time.  Same as original (found in WP-15-01R, presented to WG-3 at 
meeting #15), except for: the addition in Column 1 of the values of a as required when 
t=n=z in Column 4 of Fig.7; and the name of X.  In Fig.7, for the Binomial, M=np=at, 
therefore a = p; and for the Negative Binomial-2, M=(np/q)=at, therefore a=p/q.   
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Fig.9 (New): Geometric Distribution (GD) 
1. Column 1: Geometric (GD-0), and modified geometric (GD-1) distributions.  

Note domain of x.   
2. Column 2: Same as Column 4 of Fig.7, with a as specified in Fig.8. 
3. Rows 2 and 4: The difference between the geometric (GD-0) and the modified 

geometric distribution (GD-1), with the same parameter, is the way in which they 
count:  GD-0 starts at one, and GD-1 starts at zero.  

 
Fig.10 (New): Arrival Separation Distribution. It is noted from the distributions, means, 
and variances, given in Fig.9 and Fig.10, that the NBD’s are the sum of n GD’s, or, to put 
it another way, the GD is a special case of the NBD with n=1.   

1. Row 2: NBD-0. 
2. Row 3: Gamma Distribution. 
3. Row 4: Besides an interchange of parameter p and q, there is no difference 

between NBD-1 and NBD-2 found in Fig.2. 
 
 
PRELIMINARY CONCLUSIONS 
 
Re/Q1:  See WP-15-01, and in this working paper, Numerical Results Section, LA Data 
Compared to NBD Table Look-Up.  The LA airborne Fruit data appears to fit to the NBD 
(actually better at the higher number of Fruit overlaps).   
 
Re/Q2:  See Numerical Results Section, Receiver Performance in a NBD Fruit 
Environment, Summary of Linear and Quadratic Decode Models.  It depends on the 
decode probability.  Linear decode, maybe no effect.  But, quadratic decode reception 
probability would depend on the characteristics (i.e., inversely depend on the V/M ratio) 
of the NBD Fruit environment, and may be expected to be degraded (by a few percent) in 
performance compared to a Poisson Fruit environment, as the Fruit rate increases.  The 
decode models in this working paper are based on a limited set of data – zero to five Fruit 
overlaps. Higher terms will be necessary to determine the actual shape of the probability 
curve. Even a combination of the three decode models presented in this working paper is 
possible, e.g., quadratic for V/M ~ 1, linear for V ~ 2, and geometric for V/M > 3.   
 
Re/Q3:  See Figs.7-10. 

1. This is still a sketchy analysis.   
2. With regard to continuous time domain distributions, it seems that a particular 

form of a continuous generalized Pareto distribution (parameters n and a, see 
Fig.7) in the time domain, may be the best “bet” to simulate a NBD-2 count 
distribution (parameters n and q = 1/(1+a), because p+q=1 and np/q=at from 
Figs.2 and 7). 

3. The analysis seems to indicate that, if you generate a NBD-1 arrival separation 
distribution, then this should give you a NBD-2 count distribution, similar to the 
fact that; if you generate a NBD-0 arrival separation distribution, then this should 
give you a BD count distribution; and if you generate a gamma arrival time 
distribution, then this should give you a PD count distribution. 
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4. Since a Gamma distribution (parameters n and a, see Fig.10) may be used to 
approximate a NBD-1 arrival separation distribution (parameters n and a = q/p), 
maybe a Gamma distribution can be used in the time domain to obtain an 
approximate NBD-2 count distribution.  It should be noted that the shape of the 
cumulative probability curves in WP-14-15 seems to suggest that a Pareto-like, 
rather than a Gamma distribution, will give a better fit to the data, at least in the 
time domain. 

5. With regard to the discrete interarrival separation distributions, I don’t see how a 
single one-parameter (p) geometric distribution (GD) could generate a two-
parameter (n and p) NBD or BD.  However, it would seem that a set of n GD-1 or 
n GD-0 interarrival separation distributions, could be used to generate NBD-1 or 
NBD-0 arrival separation distributions, respectively.  In other words, to generate a 
NBD-1 arrival separation distribution, use n fruit generators, each set with 
modified geometric (GD-1) interarrival separation distributions.  This should 
result in a NBD-2 or BD count distribution, per item 3 above. 

6. To generate a modified geometric (GD-1) interarrival separation distribution, it 
seems to me that it is necessary to pick a bin size wide enough so that after the 
first 20-microsecond ATCRBS (Mode C and 15-pulse Mode 3/A) reply, a second 
20-microsecond ATCRBS reply will be generated in the same time bin with a 
probability of p.  For a uniform probability of generating an ATCRBS reply in a 
time bin, this would seem to require the bin size T = 40/p microseconds, where 
the NBD-1 arrival separation distribution you are trying to generate is NB(x;n,p) 
given in Fig.10.     
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 

Arrival Separation Distribution 

nq/(p^2) nq/p (n+x-1)!/x!(n-1)! 
(p^n)(q^x) 

NBD-1 
NB(x;n,p) 
x=0,1,2,… 

n/(a^2) n/a (a/(n-1)!) 
((at)^(n-1))exp(-at) 

Gamma 
GA(t;n,a) 

nq/(p^2) n/p (x-1)!/(x-n)!(n-1)! 
(p^n)(q^(x-n)) 

NBD-0 
NB0(x;n;p) 
x=n,n+1,… 

Variance Mean Parameters q=1-p 
p=(0,1), n=1,2,… 

Separation 
Distribution 




